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Received 12 February 1979 

Abstract. The convergence of a certain sequence of Legendre Pad6 approximants defined 
in a previous work is illustrated numerically for the case of the Yukawa potential, and in 
particular when this potential is such that the partial wave series converges only slowly. The 
sequences converge appreciably faster than this series in the physical region, and also 
converge quite quickly even in regions where the series diverges. The Legendre Pad6 
approximants are used to construct convergent sequences of approximants to the impact 
parameter amplitude, and numerical results are given in the Yukawa case. The unitarity of 
the extrapolated partial waves is also studied numerically. 

1. Introduction 

In previous works (Common and Stacey 1978a, b, 1979) convergent sequences of 
Legendre Pad6 approximants were constructed to both the real and imaginary parts of 
scattering amplitudes for a large class of potentials, including the important Yukawa 
potential V ( r )  = -G exp(-Cc.r)/r. It is of course interesting to see how well these 
sequences of approximants converge in practice, and in this work we present results of 
numerical evaluations for the Yukawa case. 

In § 2 we present sets of results for both the real and imaginary parts of the scattering 
amplitude at various points in the cut plane analyticity domain of the amplitude and 
compare them with the truncated partial wave series. 

It is well known (Henzi 1966, Kupsch and Statamescu 1973, Islam 1976) that, in 
order to define precisely the impact parameter amplitude, one needs to know the 
scattering amplitude not only for physical values of z = cos 8, where 8 is the scattering 
angle, but also for values extending to 00 in some direction in the complex plane. 
Therefore, to evaluate the impact parameter amplitude from physical values of the 
scattering amplitude, we need a method for continuing this amplitude into the complex 
plane. Our approximants provide such a technique, and, when used in the definition of 
the impact amplitude given by Henzi (1966), give approximants to this amplitude. It is 
shown in § 3 that these approximants have a simple analytic form and converge to the 
exact impact parameter amplitude when the corresponding Legendre Pad6 approxi- 
mants converge to the scattering amplitudes. Numerical results are presented for the 
case of the Yukawa amplitude. 

A useful property of our Legendre Pad6 approximants is that the higher partial 
waves have a simple expression in terms of the parameters of the approximant. An 
interesting question is how well these extrapolated partial waves satisfy unitarity. We 
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2564 A K Common 

have investigated this problem numerically for the Yukawa amplitude, and the results 
are presented in 9 4. It is found that, although these extrapolated partial waves do not 
satisfy unitarity precisely, it is approximately satisfied when the approximant is close to 
the scattering amplitude in the physical region and when the partial waves are not too 
small. 

Finally, we summarise the conclusions of this work in 9 5 .  

2. Legendre Pade approximants to the Yukawa scattering amplitude 

We consider scattering? by the Yukawa potential V ( r )  = -G exp(-pr)r. The phase 
shifts were evaluated using the subroutine PHASE constructed by Klozenberg (1 974). 

In table 1 we present the values of the first 15 phase shifts for G = 4, p = 1 and the 
energy of the scattered particle = J  = k2 = 45. It will be seen from table 1 that for these 
values of the parameters the partial waves are only slowly tending to zero, so that the 
partial wave series will converge only slowly in the physical region. The full domain of 
convergence is a very small ellipse with foci at *1 and right-hand extremity at 
z = 1 + ( ~ ’ / 2 k * ) ( 4 p ’ + p ~ / k ~ ) =  1.045, even if the first Born approximation is 
subtracted off, so the series cannot be used directly to give a good continuation away 
from the physical region. 

Table 1. The partial wave phase shifts. 

1 0 1 2 3 4 5 6 

&(rad) 0.7912 0.4978 0,3567 0.2693 0.2092 0.1655 0.1326 

1 7 8 9 10 11 12 13 

&(rad) 0.1073 0.0874 0.0161 0.0589 0.0487 0.0404 0,0336 

The Legendre Pade approximants which form convergent sequences of approxi- 
mants to the real and imaginary parts of the Yukawa scattering amplitude are defined as 
follows. First of all, for the imaginary part of the scattering amplitude, 

m 

the approximants are$ 

-Lo-l  where CY; = apu, and 

f f P  
Z f l  

g f l ( w ) =  c - 
p = l  1 + a p w  

f We choose units where h = c = 1 = 2 x the mass of the scattered particle. 
.$The dependence on s of the terms is understood. 
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is the approximant to 
m 

g ( w ) =  C Imfi+k(-w)’ 
r =o 

defined in equation (5.4) of a previous paper (Common and Stacey 1978b). 
Similarly, for the real part of the scattering amplitude, 

the approximants are? 

where now 

is the approximant to 

analogous to the approximant (2.3). Previously (Common and Stacey 1979) the first 
Born term was subtracted from Re F(s,  t )  in order to prove convergence of the 
corresponding approximants. However, we found that our numerical results were more 
stable if this subtraction was not made. 

Finally, Lo appearing in (2.2)) (2.6) is the number of subtractions in the fixed 
s-dispersion relations for the respective amplitudes. The values to be taken for Lo are 
related to the positions of the Regge poles of the Yukawa amplitude as described 
previously (Common and Stacey 1979). A study of the trajectories of these poles in the 
case of the Yukawa potential has been made by Lovelace and Masson (1962), and from 
their figure 1 we can deduce that for s = 45, G = 4 we can take Lo = 1 in both (2.2) and 
(2.6). 

In table 2 we give the values of Refk(z)  and Imf i ( z )  for real values of z and for 
n = 3 and 4. We compare them with those of the partial wave seriesf&) truncated at 
I = 15. In doing this we have omitted values of f~s(z) outside the physical region, since 
the partial series blows up outside its ellipse of convergence, which has foci at *l and 
right-hand extremity at z = 1.045 as mentioned earlier. 

It will be seen that our approximants converge appreciably faster than the partial 
wave series in the physical region -1 s z s 1, and also a long way along the negative z 
axis where the series blows up. To illustrate how our approximants converge in the 
complex plane, we give in table 3 values of our Legendre Pade approximants Fk (z) to 
the whole scattering amplitude f ( s ,  t )  rather than to the real and imaginary parts 
separately. Although we cannot prove convergence for this type of approximant, in 
practice we find that they seem to converge as well as the approximants Re f b  (z) and 
Im f k  (2). This of course happens in the case of ordinary Pad6 approximants, which in 
practice converge for many series for which convergence cannot be proved. The Fk (z) 
are computed at points on an ellipse with foci at *l and left-hand extremity z = -2.51. 

.I The dependence on s of the terms is understood. 



2566 A K Common 

Table 2. Approximants to the real and imaginary part of the scattering amplitude o n  the 
real axis compared with the truncated partial wave series. 

-5.32 

-231 

-1.32 

-1.00 

-0.54 

-0.06 

0.54 

0.93 

1.00 

-0.2615 
0.7076 

-0.2338 
1,3049 

-0.9810 
1.9868 

-0.0050 
2.3078 
0.2421 
2.9848 
0.8408 
4,2169 
4,2344 
8.6343 

45.6360 
29.3516 

225,896 
51.8826 

-0.2809 
0.7008 

-0.2393 
1.3033 

-0,9900 
1,9866 

-0,0045 
2,3078 
0,2422 
2‘9848 
0,8407 
4.2169 
4,2345 
8.6342 

45,7469 
29.3480 

224,542 
5 1.8817 

16.457 
2.4525 

-0.0359 
2,9761 

-0.7615 
4,1766 
6.863 
8,6979 

36.383 
29.1808 

230.912 
5 1.8099 

Table 3. The real and imaginary parts of approximants to the scattering at points on an 
ellipse with foci at *l and semi-major axis 2.51. 

-2.51 -0.2320 -0.2373 0.464 
0.00 1,3085 1.3077 

-2.43 -0.4608 -0.4665 0.466 
0.57 1.3294 1.3317 

1.11 1.3353 1.3413 
-2.20 -0.7165 -0.7241 0.492 

-1.83 -1.0160 -1,0177 0,553 

-1.34 -1.3815 -1.3762 0.677 

-0.78 -1,8420 -1,8218 0,924 

-0.16 -2.4363 -2.3837 1.433 
2.30 0.9231 0.9402 
0.47 -3.2235 -3.0926 2.574 
2.26 0.5371 0.5281 
1.07 -4.3348 -3.9833 5.466 
2.08 -0.0053 -0,1501 

1.58 1.3191 1.3295 

1.94 1.2658 1.2809 

2.19 1,1481 1.1670 

This ellipse is of course much larger than the ellipse of convergence of the partial wave 
series. The approximants are given for n = 3  and 4, and we have computed the 
fractional error 

A ( z ) =  ~ F ~ ( z ) - F : ( ~ ) I I I F : . ( ~ ) I  
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which is given in table 3 as a percentage. It will be seen that the convergence is quite 
good well away from the cut of F ( z ) = f ( s ,  t) which runs from I = 1.045 to 00, but 
deteriorates as this cut is approached. As expected, we find that as we go to larger 
ellipses the convergence is slower. 

3. Approximants to the impact parameter amplitude 

The impact parameter amplitude a (b, s) has the standard definition 

a(b,  s) =- 1' dtf(s, t ) J o ( b 6 ) ,  b 30, (3.1) 2k2 --CO 

but difficulties occur whenf(s, t )  does not decrease faster than (-t)-1'2 on the negative t 
axis, since the integral in (3.1) is then no longer convergent. In such cases the impact 
parameter amplitude may be split into a distribution at b = 0 plus a well-behaved 
function for b > O  (Henzi 1966, Kupsch and Statamescu 1973, Islam 1976). 

To define a(b ,  s )  uniquely, all the values of f (s ,  t )  on a contour extending to infinity 
in the complex t plane must be used (or equivalent information). Often f (s ,  t )  is only 
known for the physical values -4k2 d t d 0, and one has therefore to continue it outside 
this region to evaluate h(b ,s ) .  An obvious method of continuation is to use our 
Legendre Pad6 approximants, and it turns out that the corresponding approximants to 
h(b, s) have a simple analytic form. 

For convenience we concentrate our discussion on a(b ,  s), the impact parameter 
amplitude corresponding to Imf(s, t )  as defined by Henzi (1966), 

a(b ,  s) =-& I dt  Imf(s, t)Ko(bJ$, 
4 ~ k  1 c (3.2) 

where C is the contour indicated in figure 1 and Ko(z) is the modified Bessel function. In 
that case 

Lo-1 -CO 

Imf(s, t )  = C a,(s)t" +2k2  Jo a(b, s ) J ? ( b c t ) ,  
n = O  

(3.3) 

Figure 1. The integration contour C. 
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with 
2m (-l)m 

JOL"(z)= y(?) . 
m = ~ o  (m!) 2 (3.4) 

We define the following sequence of approximants to a (b, s), 

n = 0 , 1 , 2  , . . . ,  b > 0 ,  (3.5) 

where Imfk(z)  has been defined in (2.2) and z = 1 +t/2k2.  

Theorem 3.1. If Imfk(z)  converges uniformly to Imf(s,  t )  on any bounded interval of 
C, then 

lim an(b, s) = a(b,  s), b > 0 ,  
n-W 

and the limit is uniform for s fixed and all b 2 bo> 0, where bo is a positive constant. 

Proof. The result follows from the assumed convergence of Im f k  ( z )  to Im f(s, t )  and 
the inequality 

IKo(b./;)/ < c1 exp(-bJmsin b), b>O, tEC,  (3.6) 

where c1  is a constant. 
We will now obtain an explicit form for a,(b, s) when 

IbP I < 1,  -.rr<argup <T,  p = 1,. . . , n (3.7a) 

l b p l  1, 

or 

(3.76) - % r < a r g u , ~ $ . r r ,  1 p = l ,  . . . ,  n. 

Theorem 3.2. If the approximant Im fb(z) to Im f(s, t )  is such that the conditions (3.7) 
are satisfied, then 

where 

x; = (1 -u;)/up, with R e x p 2 0 .  

Proof. It is straightforward to show that the terms in Imfk(z)  proportional to Pl(z)  do 
not contribute to the contour integral on the RHS of (3.5). This follows by closing C by 
an arc of a large circle, such that on the arc /arg ti < T. The integral over this arc tends to 
0 as the radius of the arc tends to o;, because of (3.6), and therefore so does the integral 
of these terms over C, since they are analytic inside the closed contour. Therefore 

(3.9) 

Since we assume in (3.7) that up does not lie on the negative real axis, we can choose T so 
that none of the cuts of the approximants lie in the sectors - 7 r < a r g t ~ - . r r + ~ ,  
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T - 7 < arg t C T. In that case the contour can be collapsed onto the negative t axis, and 
using the well-known discontinuity of K o ( b h )  across this axis (Abramowitz and Stegun 
1964, p 37% 

(3.10) 

The square root in the denominator of the integrand has by convention a positive real 
part, and we show in the Appendix that, if up satisfies (3.7) for all p = 1, . . . , n, then we 
may write 

with --T < arg U < T, -T < arg[(l - + U’] < T. The integrand is a standard 
integral of a Bessel function, and substituting in the form for it given by equation (8) of 
Bateman (1954, p 7) we arrive at the expression (3.8) for an@, s). 

We have had to require that the up satisfy (3.7) in order that the argument of 
(1 - U ~ ) ~ / U ~  + u 2  lies between -T, T so that the standard form of the integral may be 
used. These conditions will certainly be satisfied if g( w )  = E;“=, Im fr+b+l(s)(- w)’ has a 
radius of convergence ro > 1, since the poles of g, (w) will migrate to the cut of g(  w) as 
n + 00. This will be the case for scattering by classes of potentials considered previously 
(Common and Stacey 1978a, b, 1979), including the important pure Yukawa potential. 

We give in table 4 values of an@, s)  with n = 3 , 4 , 5  for scattering by the Yukawa 
potential considered in 9: 2 for a selection of values of 6, and it can be seen that the 
approximants are converging quickly. It is well known that for large bk, a(b, s) = 
Im fr(s) with 1 = bk - 3. This is why we have chosen the particular values of b in table 4, 
which correspond to 1 = 1 , 2 , .  . . as illustrated. For comparison we have also given 
Im fr(s) at these 1 values. Comparing a,@, s) with Im fr(s), it can be seen in this example 
that the impact parameter amplitude approximates the partial wave amplitude for even 
quite low values of 1. 

Table 4. The approximate impact parameter amplitudes as compared with those of 
Cottingham and Peierls and the partial wave amplitude. 

i b  ag(b, s) x 10’ a4(b, s) x 10’ as(b, s) x 10’ acp(b, s) Imfi(s) x 10’ 
x 102 

1 0.224 23.4290 23.4066 23,3952 38.43 22.8000 
2 0.373 12.3192 12.3217 12.3232 17.46 12.1922 
3 0.522 7,1120 7.1123 7,1122 7.745 7.0783 
4 0.671 4.3185 4.3181 4.3180 6.228 4.3135 
5 0.820 2,7103 2,7104 2.7105 3.682 2.7149 
6 0.960 1,7421 1.7423 1.7423 1,585 1.7488 
7 1.118 1.1396 1.1401 1.1401 1.645 1.1464 
8 1.267 0.7550 0.7565 0.7565 1.141 0.7618 
9 1.416 0.5048 0.5076 0,5075 0.301 04119 

11 1.714 0.2295 0.2349 0.2344 0.2371 
13 2.013 0.1057 0.1119 0.1111 0.1127 
15 2.311 0.0490 0.0546 0.0536 0.0546 
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An earlier way of dealing with the fact that one needed the scattered amplitude for 
values of t extending to infinity to obtain the impact parameter amplitude was to take 
instead an integral over only physical values of t (Cottingham and Peierls 1965) and 
define 

1 Y O  

a d b ,  s) = ) Jo(bdr) Imf(s, r )  dt. (3 .12)  
2k -4k2 

We have evaluated these amplitudes by doing the integration numerically. Im f(s, t )  
was calculated by summing the truncated partial wave series up to 1 = 14, which gave 
a&b, s) to within an accuracy of 1% for b S 1.4. For higher values of b the results 
become unstable and have been omitted from table 4. It will be seen that there is an 
appreciable difference between the values of the impact parameter amplitude defined in 
the above manner and that defined in (3 .2) .  

4. Extrapolated partial waves 

As is the case for the ordinary Pade approximants, our approximants to the scattering 
amplitude appear to converge €or a much wider class of amplitudes than that for which 
convergence can be proved. For instance, as mentioned in 0 2 ,  we can construct 
approximants to the full amplitude f(s, t ) .  They are 

n = 0 , 1 , 2  , . . . ,  (4 .1)  

where a! b = a!pa~-Lo-l are related in the usual way to the [ n  - l / n ]  Pad6 approximant to 
g ( w )  = X ? = ~ f i + ~ ( - w ) ~ .  Since here we are not concerned with proving convergence, we 
do not add and subtract a function to g ( w ) ,  and so the sum over p runs only to n and not 
2n as in (2.2) and (2.6).  

A useful property of our approximants is that their partial waves are easily 
evaluated. For example, if f t n ( s )  is the Ith partial wave of Fk (z), then using the fact that 
the terms in the sum over p are just proportional to the generating functions of the 
Legendre polynomials, 

Since 

it follows that f $ ( s )  will be a good approximant to fr(s) if the average error in F f ;  ( z )  is 
much less thanfi(s) itself. We have shown previously (Common and Stacey 1978a) that 
the f;fn (s) are exact for LO S I S Lo + 2n, and we expect them to be a good approximation 
for higher values of 1 if the f i ( s )  do not decrease too quickly with increasing 1. 

In table 5 we give values of the real and imaginary parts of the partial waves of the 
approximants F ; ( z )  and compare them with exact partial waves fr(s). The partial 
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Table 5. Extrapolated partial waves and their unitarity as compared with the exact partial 
waves. 

I Ref ix10  Imfix102 RefiqkxlO Imf&x102 Imf$/lft4/’ 

9 0.7136 0.5119 0.7137 0.5117 0.9995 
10 0.5881 0.3471 0.5882 0.3461 0.9966 
11 0.4864 0.2371 0.4867 0.2344 0.9872 
12 0.4035 0.1630 0.4040 0.1575 0.9636 
13 0.3356 0.1127 0.3363 0.1035 0.9144 

waves for 1 sz 8 agree exactly, and we have presented the values for 9 < 1 s 13. It will be 
seen from table 5 that for these values of 1 the extrapolated partial waves approximate 
well the exact waves, and from the last column we also see that they satisfy the unitarity 
condition quite well. For higher values of 1 the partial waves of the exact amplitude 
continue to decrease, and the ft4 become relatively more inaccurate as the size of the 
partial wave becomes of the same order as the error between Fk ( z )  and f ( s ,  t ) ,  as we 
would expect. 

5. Conclusions 

We have demonstrated in this work, using the important example of Yukawa scattering, 
the usefulness of Legendre Pad6 approximants in evaluating the scattering amplitude 
from partial waves when these waves decrease only slowly with 1. Not only do the 
Legendre Pad6 approximants converge much faster than the partial wave series in the 
physical region, but also give reasonable convergence well outside the ellipse of 
convergence of the series. 

As a consequence, we obtain perhaps the most important result of this work, a 
convergent sequence of approximants to the true impact parameter amplitude, which 
has the extremely simple explicit form given in equation (3.8). For the Yukawa 
scattering we have given results in table 4 which demonstrate that our approximants to 
the impact parameter amplitude converge quickly for values of the impact parameter up 
to twice the range of the potential. 

We have shown in 0 4 that the higher partial waves for our approximants, which 
have the simple form (4.2), give good approximants to the higher partial waves of the 
exact amplitude. It has been our experience with the subroutine PHASE that it tends to 
break down if one tries to calculate too many partial waves. Thus our approximants 
could have an important role in evaluating such partial waves. 
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Appendix 

We wish to show that if 

-T < arg[u2 + (1 - U ~ ) ~ / U ~ , I  < T 

and 

bPl s 1, - v < a r g u p < r  
or 

1 
b P  I > 1 9  -iT c arg up c ;T, 

then 

- 7 < arg[ U 'up + ( 1 - up )'I < T,  

-r < arg[ 1 - 2u, (1 + r / 2 k  2, + ut 1 < T ,  

i.e. 

where 
2 2  t = - k  U .  

Suppose lupl = p s 1, 0 6 arg up = 6, < T.  Then 

(A6) 2 2 2 arg[u u p + ( l - u p )  1=argc7~+arg[u + ( 1 - - u P ) ' / u p ] ~ - r  

from (Al) ,  so the left-hand inequality of (A4) is satisfied. 

arg[u2+ (1 - - U ~ ) ~ / U ~ ]  = arg[u2-2 + ( p  + l / p )  cos 4 +i(p - l / p )  sin 41. 
Then, since we are assuming 0 < p 6 1, 0 6 6, < T,  

Also 

(A71 

arg[u2+ (1 - ~ T ~ ) ~ / U , ] S O S  T -4. 

arg[u2cP + (1 - up)2] < 6, + T - 6, = T ,  

(A81 

Therefore 

(A9) 

The proof of (A4) when -T < 6, < 0, p s 1 or when -$T s 6, sir, p > 1 follows in 
so the right-hand side of (A4) is satisfied. 

exactly the same way. 
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